
A Member of the FamilySponsored by

A Compressed And Multidimensional Container

For Not So Big Data

@FrancescAlted

Freelancer

HDF5 European Workshop. Grenoble September 18th, 2019

About Me

• Physicist by training.

• Computer scientist by passion.

• Open Source enthusiast by philosophy.

• PyTables (2002 - 2011)

• Blosc (2009 - now)

OPSI

Out-of-core
Expressions

Indexed
Queries

+ a Twist

What is Caterva?

• It is an open source C library and a format that allows to
store large multidimensional, chunked, compressed
datasets.

• Data can be stored either in-memory or on-disk, but the
API to handle both versions is the same.

• Compression is handled transparently for the user by
adopting the Blosc2 library.

Sponsored by

Why Another Data
Container?

• Most of the existing data containers supporting on-the-
flight compression are meant for on-disk/cloud data.

• But the memory layer can be seen as storage too, and
there is a need for a container that is optimized for this.

• Caterva is designed from the ground up to use the
memory layer as storage for a compressed data-
container.

Accelerating I/O With
Caterva

Caterva
Main Memory

Solid State Disk

C
a
p
a
ci

ty S
p
e
e
d

CPU

Level 2 Cache

Level 1 Cache

Mechanical Disk

Level 3 Cache

}}
Other
Containers

Why Another Format?

• Being able to store in an in-memory data container does
not mean that data cannot be persisted. It is critical to
find a way to store and retrieve data efficiently.

• Also, it is important to adopt open formats for reducing
the maintenance burden and facilitate its adoption more
quickly.

• As we will see soon, Caterva brings an efficient and open
format for persistency.

Caterva Brings Powerful
Slicing Capabilities

• Caterva’s main feature is to be
able to extract all kind of
slices out of high dimensional
datasets, efficiently.

• Resulting slices can be either
Caterva containers or regular
plain buffers (for better
interaction with e.g. NumPy).

Accessing Chunked
Datasets

• Those used to manipulate
chunked multidimensional
arrays know how critical
choosing the partition size is.

https://github.com/Blosc/cat4py/blob/master/notebooks/compare_getslice.ipynb

You can play with a small, but representative benchmark at:

https://github.com/Blosc/cat4py/blob/master/notebooks/compare_getslice.ipynb

Performance In-Memory

Caterva is meant to read data from memory very fast!

Performance On-Disk

There is still room for optimization when reading from disk…

Example of muti-dimensional array creation

#include <caterva.h>

int main(){
 // Create a context
 caterva_ctx_t *ctx = caterva_new_ctx(NULL, NULL, BLOSC2_CPARAMS_DEFAULTS, BLOSC2_DPARAMS_DEFAULTS);
 ctx->cparams.typesize = sizeof(double);

 // Define the partition shape for the first array
 int8_t ndim = 3;
 int64_t pshape_[] = {3, 2, 4};
 caterva_dims_t pshape = caterva_new_dims(pshape_, ndim);

 // Create the first (empty) array
 caterva_array_t *cat1 = caterva_empty_array(ctx, NULL, &pshape);

 // Define a buffer shape to fill cat1
 int64_t shape_[] = {10, 10, 10};
 caterva_dims_t shape = caterva_new_dims(shape_, ndim);

 // Create a buffer to fill cat1
 size_t buf1size = 10 * 10 * 10 * sizeof(double);
 double *buf1 = (double *) malloc(buf1size * sizeof(double));

 // Fill cat1 with the above buffer
 caterva_from_buffer(cat1, &shape, buf1);

 free(buf1);
 caterva_free_array(cat1);

 return 0;
}

// Apply a `get_slice` to cat1 and store it into cat2
int64_t start_[] = {3, 6, 4};
caterva_dims_t start = caterva_new_dims(start_, ndim);
int64_t stop_[] = {4, 9, 8};
caterva_dims_t stop = caterva_new_dims(stop_, ndim);

int64_t pshape2_[] = {1, 2, 3};
caterva_dims_t pshape2 = caterva_new_dims(pshape2_, ndim);
caterva_array_t *cat2 = caterva_empty_array(ctx, NULL, &pshape2);

caterva_get_slice(cat2, cat1, &start, &stop);
caterva_squeeze(cat2);

// Create a buffer to store the cat2 elements
uint64_t buf2size = 1;
caterva_dims_t shape2 = caterva_get_shape(cat2);
for (int j = 0; j < shape2.ndim; ++j) {
 buf2size *= shape2.dims[j];
}
double *buf2 = (double *) malloc(buf2size * sizeof(double));

// Fill buffer with the cat2 content
caterva_to_buffer(cat2, buf2);

printf("The resulting hyperplane is:\n");
for (int64_t i = 0; i < shape2.dims[0]; ++i) {
 for (int64_t j = 0; j < shape2.dims[1]; ++j) {
 printf("%6.f", buf2[i * cat2->shape[1] + j]);
 }
 printf("\n");
}

Example of getting a slice out of a muti-dimensional array

Brief Comparison Against Well
Known Chunked Containers

HDF5 Zarr Caterva

One-file per
container?

Yes

(> 1 container)

No 
(1 file per chunk) Yes

Hierarchical Yes Yes
No 

(use the
filesystem)

Mature Yes Yes In process

In-memory 
 version?

Yes 
(sequential?)

Yes 
(sparse)

Yes  
(sequential /

sparse)

Blosc2
• Blosc2 is the next generation of the well-known Blosc (aka Blosc1).

• New features:

• Enlargeable 64-bit containers: in-memory or on-disk

• New compression codecs

• New filters

• Metalayers

• User metadata

!

Decompression Speed

http://alimanfoo.github.io/2016/09/21/genotype-compression-benchmark.html

http://alimanfoo.github.io/2016/09/21/genotype-compression-benchmark.html

Containers in Blosc2

Header

Codec

Filter pipeline

…

MetaLayers

Chunk Index

Trailer
UserMeta

Fingerprint

Chunk 0
Chunk 1
Chunk 2

Frame

MetaLayers

Pointers

Chunk 0

Chunk 1

Chunk 2

Codec

Filter pipeline

….

Super-chunk

UserMeta

• Sparse

• In-memory

• Sequential

• In-memory / On-disk

}
}

• Metalayers are small metadata for informing about the
kind of data that is stored on a Blosc2 container.

• They are handy for defining layers with different specs:
multi-dimensions, data types, geo-spatial…

MetaLayers in Blosc2

Container

MD-Type

Machine 
Learning

GenomicsGeoSpatial

Microscopy

Astronomy Nuclear

Layer1
Layer2

Multiple layers to target different data aspects

MetaLayers in Blosc2

Caterva MetaLayer
Caterva specifies a metalayer on top of a Blosc2 container
for storing multidimensional information:

typedef struct {
 int8_t ndim;
 //!< The number of dimensions
 uint64_t dims[CATERVA_MAXDIM];
 //!< The size of each dimension
 int32_t pdims[CATERVA_MAXDIM];
 //!< The size of each partition dimension
} caterva_dims_t;

This metalayer can be modified so that the shapes can be
updated (e.g. an array can grow or shrink).

Why Caterva is Type
Agnostic?

• There are too many data type systems floating around.

• Multi-dimensionality is orthogonal to the data type.

• This is why we decided not to make the type part of
Caterva.

• The interested parties can always define a metalayer for
endowing the desired type system to the data.

Example: add a metalayer for specifying the data type 
https://github.com/Blosc/cat4py/blob/master/notebooks/

array-metalayer.ipynb

https://github.com/Blosc/cat4py/blob/master/notebooks/array-metalayer.ipynb
https://github.com/Blosc/cat4py/blob/master/notebooks/array-metalayer.ipynb

Frame Format and
MetaLayers Specs

• The format for a Blosc2 frame is completely specified at:

• https://github.com/Blosc/c-blosc2/blob/master/
README_FRAME_FORMAT.rst

• The format for a Caterva metalayer:

• https://github.com/Blosc/Caterva/blob/master/
README_CATERVA_METALAYER.rst

Everything specified in the msgpack format.

https://github.com/Blosc/c-blosc2/blob/master/README_FRAME_FORMAT.rst
https://github.com/Blosc/c-blosc2/blob/master/README_FRAME_FORMAT.rst
https://github.com/Blosc/Caterva/blob/master/README_CATERVA_METALAYER.rst
https://github.com/Blosc/Caterva/blob/master/README_CATERVA_METALAYER.rst
https://msgpack.org

Where Caterva Can Help?

• Whenever there is a need to deal with multidimensional
datasets as fast as possible.

• Provide a backend for other packages (bcolz? zarr?).

• Caterva is written in portable C99, so no limitations to
be wrapped from other languages than e.g. Python.

• Allow to create different metalayers that adapt to user’s
needs.

https://bcolz.readthedocs.io/en/latest/
https://zarr.readthedocs.io/en/stable/

Where You Can Help?

• Blosc2, Caterva and cat4py (Caterva’s Python wrapper),
are all open source, so you can always contribute with
ideas and code.

• If you like the concepts behind the Blosc project as a
whole, and you don’t have time to contribute with code,
please donate to:

https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org

Overview
• Caterva is a C library and a format for handling

multidimensional data on top of Blosc2 containers.

• The main goal is to efficiently leverage fast storage like
memory, persistent memory (Intel Optane) or SSDs.

• You can use metalayers for adapting Caterva containers
to your own needs.

https://github.com/Blosc/caterva
https://github.com/Blosc/c-blosc2

Acknowledgements
• First and foremost to Aleix Alcacer who

contributed most of the code behind
Caterva.

• Christian Steiner, for suggestions and
improvements on Blosc2 / Caterva projects.

• Pepe Aracil, for his proposal for using
msgpack for serializing Blosc2 containers.

• Last but not least, NumFOCUS for providing
funding for developing Blosc2 and Caterva.

Thank You!

Questions?

